On the solution of hyperbolic equations using the peridynamic differential operator

Abstract

Numerical solution of hyperbolic differential equations, such as the advection equation, poses challenges. Classically, this issue has been addressed by using a scheme known as the upwind scheme. It simply invokes more points from the upwind side of the flow stream when calculating derivatives. This study presents a generalized upwind scheme, referred to as directional nonlocality, for the numerical solution of linear and nonlinear hyperbolic Partial Differential Equations (PDEs) using the peridynamic differential operator (PDDO). The PDDO provides the nonlocal form of the differential equations by introducing an internal length parameter (horizon) and a weight function. The weight function controls the degree of interaction among the points within the horizon. A modification to the weight function, i.e., upwinded-weight function, accounts for directional nonlocality along which information travels. This modification …

Publication
Published