Extended finite element modeling of deformable porous media with arbitrary interfaces


In this paper, the crack growth simulation is presented in saturated porous media using the extended finite element method. The mass balance equation of fluid phase and the momentum balance of bulk and fluid phases are employed to obtain the fully coupled set of equations in the framework of u-p formulation. The fluid flow within the fracture is modeled using the Darcy law, in which the fracture permeability is assumed according to the well-known cubic law. The spatial discretization is performed using the extended finite element method, the time domain discretization is performed based on the generalized Newmark scheme, and the non-linear system of equations is solved using the Newton–Raphson iterative procedure. In the context of the X-FEM, the discontinuity in the displacement field is modeled by enhancing the standard piecewise polynomial basis with the Heaviside and crack-tip asymptotic functions, and the discontinuity in the fluid flow normal to the fracture is modeled by enhancing the pressure approximation field with the modified level-set function, which is commonly used for weak discontinuities. Two alternative computational algorithms are employed to compute the interfacial forces due to fluid pressure exerted on the fracture faces based on a ‘partitioned solution algorithm’ and a ‘time-dependent constant pressure algorithm’ that are mostly applicable to impermeable media, and the results are compared with the coupling X-FEM model. Finally, several benchmark problems are solved numerically to illustrate the performance of the X-FEM method for hydraulic fracture propagation in saturated porous media.

Applied Mathematical Modelling