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Abstract

Numerical solution of hyperbolic differential equations, such as the advection equation, poses challenges. Classically, this
ssue has been addressed by using a scheme known as the upwind scheme. It simply invokes more points from the upwind side
f the flow stream when calculating derivatives. This study presents a generalized upwind scheme, referred to as directional

nonlocality, for the numerical solution of linear and nonlinear hyperbolic Partial Differential Equations (PDEs) using the
peridynamic differential operator (PDDO). The PDDO provides the nonlocal form of the differential equations by introducing
an internal length parameter (horizon) and a weight function. The weight function controls the degree of interaction among
the points within the horizon. A modification to the weight function, i.e., upwinded-weight function, accounts for directional
nonlocality along which information travels. This modification results in a stable PDDO discretization of hyperbolic PDEs.
Solutions are constructed in a consistent manner without special treatments through simple discretization. The capability of
this approach is demonstrated by considering time dependent linear and nonlinear hyperbolic equations as well as the time
invariant Eikonal equation. Numerical stability is ensured for the linear advection equation and the PD solutions compare well
with the analytical/reference solutions.
© 2022 Elsevier B.V. All rights reserved.
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1. Introduction

Hyperbolic partial differential equations (PDEs) are commonly encountered in the modeling of phenomena such
s advection, wave transportation, hypersonic flows, mixing flows, atmospheric flows, and hydraulic jumps, etc.
lthough there exist numerical methods for solving such PDEs, known as the upwind-scheme [1–5], they face

hallenges if solutions contain discontinuities such as a shock or a contact discontinuity. The challenges arise
ecause the solution does not smooth out with time and discontinuities persist even if the initial and boundary
onditions are smooth. However, the discontinuities should be captured and preserved during the solution. Also, the
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solution method should ideally preserve the conservation of energy. Therefore, the solution procedure is problem
dependent and becomes more of an art.

Although computationally fast and easy to implement, the finite difference methods inherently prone to numerical
iffusion and dispersion break down and produce oscillations near the discontinuities such as a shock. Numerical
iffusion develops across the contact discontinuity with each time step; it smears out the contact discontinuity during
he solution. It is globally nonconservative and requires structured discretization [6]. The finite volume method
pproximates the spatial derivatives by integrating across a discrete (finite) control volume associated with each grid
oint while satisfying the integral conservation law for each control volume. It enables the use of unstructured grid;
hus, it is suitable for domains with complex geometry. However, it is not easy to implement and is not suitable
or Lagrangian models. It also suffers from the presence of discontinuities and higher order of derivatives [7].
he extended finite element method [8] offers an accurate solution for capturing discontinuities, however, tracing
iscontinuities pose significant challenges within this framework.

A general solution scheme that can handle complex discontinuities for hyperbolic problems is still an open
uestion in computational sciences. The characteristic speed and the direction of the information travel are important
hen solving hyperbolic PDEs numerically. Therefore, accurate determination of the derivatives of the field variable

n the presence of discontinuities and incorporation of the characteristic directions become vital for obtaining the
orrect solution.

In order to remove these challenges, nonlocal convection equation and nonlocal hyperbolic conservation laws
ere introduced by employing the peridynamic nonlocal operators. Tian et al. [9] proposed a non-local convection–
iffusion model using finite element approximation and compared upwind and symmetric kernel cases. They
bserved that the symmetric kernel model generates unnecessary oscillations; however, the upwind model is more
table. Leng et al. [10] presented a Petrov–Galerkin method for the nonlocal convection dominated diffusion problem
sing a spherical and a hemispherical interaction region. Lee and Du [11] extended the nonlocal modeling by stating
hat symmetry of the non-local interaction is not essential for nonlocal modeling. Also, Lee and Du [12] created two
mooth Particle Hydrodynamic (SPH) models using upwind kernel and a nonlocal viscous term by borrowing them
rom local theory and concluded that their method is inherently stable. Du et al. [13] introduced a nonlocal model
or conservation laws with monotonicity preserving and entropy stable properties. Also, Du et al. [14] considered
onlinear conservation laws using nonlocal theory. Du et al. [15] considered initial volume-constrained problems
ncountered for linear nonlocal convection–diffusion equation.

The Peridynamic differential operator (PDDO) introduced by Madenci et al. [16–18] also provides the nonlocal
orm of hyperbolic PDEs by introducing an internal length parameter (horizon) and a weight function. It enables
umerical differentiation through integration; thus, the field equations are valid everywhere regardless of the
resence of discontinuities. It simply considers the interaction between the neighboring points for the evaluation
f derivatives. The weight function controls the degree of association among the points within the horizon. This
tudy introduces an upwinded-weight function based on the knowledge of characteristic directions along which
nformation travels. This form of the weight function enables the solution of hyperbolic PDEs using the PDDO;
he solution procedure is no longer problem dependent.

Solutions to challenging linear and nonlinear multi-dimensional hyperbolic PDEs are constructed in a consistent
anner without special treatments. It captures the discontinuities with simple discretization. Furthermore, it enables

he imposition of periodic boundary conditions without any additional constraint conditions. The capability of
his approach is demonstrated by considering time dependent linear and nonlinear hyperbolic equations as well
s the time independent nonlinear Eikonal equation. Numerical stability is ensured analytically for the linear
dvection equation and numerically for all other problems, and solutions compare well with the analytical/reference
olutions.

. Hyperbolic equations

The hyperbolic partial differential equations arise in many problems including wave transportation, hypersonic
ows and advection problem, resulting in different form of PDEs. This study concerns two classes of first-order
yperbolic equations: time dependent PDEs arising in problems such as advection and time-invariant PDEs arising

n problems such as the Eikonal equation.
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2.1. First order time-dependent

The general form of time dependent and first-order hyperbolic system of equations of conservative type can be
tated as

∂Q
∂t

+
∂F
∂x

= 0 (1a)

or
∂Q
∂t

+ J
∂Q
∂x

= 0 (1b)

ubjected to the initial condition

Q(x, t = 0) = f(x) (2)

nd Dirichlet and Neumann boundary conditions

Q(x, t) = gD(x, t) (3a)

nd

∇Q(x, t) • n = gN (x, t) (3b)

here Q is a vector of unknown field variables, F = F(Q) is the flux vector and J =
∂F
∂Q is the Jacobian matrix with

real and distinct eigenvalues. The known functions, f(x), gD(x, t) and gN (x, t) represent the specified initial and
oundary conditions, respectively. The eigenvalues correspond to the characteristic speeds of the system and the
igenvectors provide the directions of information travel. The characteristic speeds (eigenvalues) should be recovered
hen solving these equations numerically.

.2. First order time-invariant

In geophysics, a time independent first order nonlinear hyperbolic PDE known as the Eikonal equation describes
he traveltime, T = T (x) of propagating compression waves under the acoustic assumption. It is subjected to a
onstraint at the source location as T (xs) = 0. For an isotropic medium, it is of the form [19](

∂T
∂x

)2

+

(
∂T
∂y

)2

+

(
∂T
∂z

)2

=
1

υ2(x)
(4)

in which υ(x) is the known velocity field. It is subjected to a constraint at the source location as T (xs) = 0. The
information travels with a direction depending on the source location or the direction of wave propagation.

3. Peridynamic differential operator

Madenci et al. [16–18] introduced the Peridynamic Differential Operator (PDDO) to construct the nonlocal
representation of a scalar field f = f (x) and its derivatives at point x by considering its interactions with the
other points, x′, in its interaction domain known as horizon, as shown in red in Fig. 1. It provides differentiation
of N th order in M dimensions through integration without a medium smoothness requirement.

The derivation of PDDO utilizes concept of PD interactions [20] and construction of PD functions that are
rthogonal to each term in the Taylor Series Expansion (TSE). In the discretized domain, each point has its own
amily members. The points x and x′ only interact with the other points in their own interaction domains, Hx and
Hx′ , respectively. The relative position vector between these points is defined as ξ = x′

−x. The interaction domains
or points x and x′ do not need to be symmetric, which makes PDDO an attractive method for variety of problems.

Since only the first order spatial derivatives of the field variable appear in Eqs. (1) and (4), its TSE is expressed
s

f (x + ξ ) = f (x) + ξx
∂ f (x)

+ ξy
∂ f (x)

+ ξz
∂ f (x)

+ R1(x) (5)

∂x ∂y ∂z

3
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Fig. 1. The PD interaction domains, a.k.a. horizons, red and green, with arbitrary shape and size, for the discretized points x and x′,
respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

where xT
= {x, y, z}, ξx , ξy and ξz are the components of the vector, ξ and R1(x) represents the remainder of the

st order approximation. Multiplying each term with PD functions, grx ry rz
1 (ξ ) and integrating over the domain of

nteraction (family), Hx result in∫
Hx

f (x + ξ )grx ry rz
1 (ξ )dVx′ = f (x)

∫
Hx

grx ry rz
1 (ξ )dVx′+

∂ f (x)
∂x

∫
Hx

ξx grx ry rz
1 (ξ )dVx′ +

∂ f (x)
∂y

∫
Hx

ξy grx ry rz
1 (ξ )dVx′ +

∂ f (x)
∂z

∫
Hx

ξzgrx ry rz
1 (ξ )dVx′

. (6)

The PD functions must be orthogonal to each term in the TSE as∫
Hx

ξ sx
x ξ

sy
y ξ sz

z grx ry rz
1 (ξ )dVx′ = δsx rx δsyry δszrz (7)

n which δsi ri with (i = x, y, z) is the Kronecker delta symbol and the super and subscripts are defined as
x , sy, sz, rx , ry, rz = 0, 1. Applying the orthogonality conditions, Eq. (7) results in PD form of the function itself
nd its first order derivatives as

f P D(x) =

∫
Hx

f (x + ξ )g000
1 (ξ )dVx′ (8)

nd ⎧⎪⎪⎨⎪⎪⎩
f P D
,x

f P D
,y

f P D
,z

⎫⎪⎪⎬⎪⎪⎭ =

∫
Hx

f (x + ξ )

⎧⎪⎪⎨⎪⎪⎩
g100

1 (ξ )

g010
1 (ξ )

g001
1 (ξ )

⎫⎪⎪⎬⎪⎪⎭ dVx′ . (9)

s detailed in Madenci et al. [18], the 1st order PD functions can be constructed using linear polynomial basis
unctions as

grx ryrz
1 (ξ ) = arx ryrz

000 w(|ξ |) + arx ryrz
x00 w(|ξ |)ξx + arx ryrz

0y0 w(|ξ |)ξy + arx ryrz
00z w(|ξ |)ξz (10)

here arx ryrz
qx qyqz with (qx , qy, qz = 0, x, y, z) are the unknown coefficients and w(|ξ |) is the non-dimensional weight

unction which controls the strength of interactions among the family members. It may vary from point to point
nd as discussed subsequently, and can also be modified to invoke directional nonlocality based on the direction
f information travel. Substituting the PD functions back into the orthogonality equation, Eq. (7) after algebraic
anipulations leads to a system of equations which determines the coefficients as
Aa = b (11)

4
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in which

A =

∫
Hx

w(|ξ |)

⎡⎢⎢⎢⎢⎢⎣
1 ξx ξy ξz

ξx ξ 2
x ξxξy ξxξz

ξy ξyξx ξ 2
y ξyξz

ξz ξzξx ξzξy ξ 2
z

⎤⎥⎥⎥⎥⎥⎦ dVx′ (12)

a =

⎡⎢⎢⎢⎢⎢⎣
a000

000 a100
000 a010

000 a001
000

a000
x00 a100

x00 a010
x00 a001

x00

a000
0y0 a100

0y0 a010
0y0 a001

0y0

a000
00z a100

00z a010
00z a001

00z

⎤⎥⎥⎥⎥⎥⎦ (13)

and

b =

⎡⎢⎢⎢⎢⎢⎣
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎦ . (14)

Determination of the unknown coefficients through a = A−1b establishes the PD functions grx rz
1 (ξ ). The derivations

and pertinent computer programs are given by Madenci et al. [18].
The weight function dictates the degree of nonlocality among the material points within the family of each point.

Any nondimensional weight function is mathematically acceptable; however, in reality, the influence of the weight
function should reflect the decrease in the degree of interaction with increasing distances, and the characteristics of
the differential equation describing a physical phenomena. In the previous studies [16–18], the weight function has
been specified as a Gaussian distribution in the form of

w (|ξ | ; δ) = e−4(|ξ |/δ)2
(15)

in which the horizon, δ defines the extent of domain of interaction, Hx for point x. However, this particular form
results in an unstable solution scheme for the solution of hyperbolic equations. To resolve this issue and motivated
by the classical upwind scheme, the weight function is modified as w

(
|ξ | , κ±

; δ
)

expressed as

w
(
|ξ | , κ±

; δ
)

= κ±e−4(|ξ |/δ)2
(16)

where the parameter κ± allows for the information travel from + and — directions as illustrated in Figs. 2 and
3 for linear and nonlinear conservation laws, respectively. This particular form provides a simple way to reflect
the effect of upwinding direction and to control the degree of interaction between the points. This modification is
sufficient to arrive at a stable PDDO discretization of hyperbolic equations. In order to satisfy the entropy condition
for nonlinear hyperbolic conservation laws, the influence of downwind family members is completely disregarded
as shown in Fig. 3. However, this is not necessary for linear conservation law as shown in Fig. 2. Therefore, small
influence from downwind material points is included in order to ensure invertibility of matrix, A in Eq. (12).

In practice, increasing the influence of upwind material points and decreasing the influence of the downwind
material points is sufficient for numerical stability for the linear problems and the values of κ can be flexible in
value. For specified values of κ , the stability limit of the method is presented in Section 5.1. For nonlinear problems,
downwind coefficients are specified as zero in order to satisfy the entropy condition which ensures that method is
conservative, consistent and monotonicity preserving as shown Section 5.2.

4. Numerical implementation

The integrals are evaluated through a meshless quadrature technique. Considering a uniform grid spacing of ∆,
the size of the horizon can be defined as δ = m∆, with m as the number of family points in each direction. To have

a stable discretization, m should be selected such that N ≤ m ≤ N + 2, with N = 1 as the highest order spatial

5
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Fig. 2. Degree of interaction among the points for F+ for linear conservation laws.

Fig. 3. Degree of interaction among the points for F+ for nonlinear conservation laws.

erivative appearing in the PDE. For a fixed value of m, the PD representation must converge to the local form as
he parameter δ approaches zero. As shown in Fig. 4., the interior points can have a symmetric family. However,
he boundary points always have a nonsymmetric family.

The discretized form of Eqs. (8) and (9) are expressed as

f P D(x(k)) =

N(k)∑
j=1

f (x( j))g000
1 (x( j) − x(k))V( j) for k = 1, . . . , K (17)

nd ⎧⎪⎪⎨⎪⎪⎩
f P D
,x (x(k))

f P D
,y (x(k))

f P D
,z (x(k))

⎫⎪⎪⎬⎪⎪⎭ =

N(k)∑
j=1

f (x( j))

⎧⎪⎪⎨⎪⎪⎩
g100

1 (x( j) − x(k))

g010
1 (x( j) − x(k))

g001
1 (x( j) − x(k))

⎫⎪⎪⎬⎪⎪⎭ V( j) for k = 1, . . . , K (18)

n which V( j) represents the volume of each point, x( j) and N(k) denote the number of family members of point x(k).
hus, the summation accounts for all of the interactions of point x(k) within its family. The Gaussian quadrature

ule is employed with unit integration weights. The total number of grid points in the computational domain is
enoted by K . In order to invoke the direction of information travel during the solution, the PD functions are
onstructed by employing the upwinded weight function. The family member construction is achieved by the

D-tree algorithm [21].

6
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Fig. 4. Domain of interaction for point x with directional nonlocality.

The boundary conditions are imposed through a boundary layer with a depth ∆ along the boundary of the
region. As introduced by Madenci et al. [22], the periodic boundary conditions are enforced by simply completing
the family of a point near the boundary as shown in Fig. 6.

The convergence of the nonlocal PD differentiation to exact local differentiation can be achieved as the horizon
decreases and the number of integration points increases with decreasing grid space, ∆x . This type convergence is
known as δ− convergence as suggested by Bobaru et al. [23]. In order to minimize the error, the appropriate value
for each variable is determined based on the δ− convergence. The convergence study is performed by considering
different horizon size, δ, grid spacing, ∆x and number of family members, m . For a fixed value of m, the PD
solution must converge to the local solution as the parameter δ approaches zero.

The convergence criteria is based on two measures. For time dependent hyperbolic PDEs, an error metric with
L1 norm is defined as

ε =

⏐⏐u(e)
m − u(c)

m

⏐⏐
1⏐⏐⏐u(e)

m

⏐⏐⏐
1

(19)

For the Eikonal equation, the global error measure is defined as

ε =
1⏐⏐u(e)
⏐⏐
max

√ 1
K

K∑
m=1

[
u(e)

m − u(c)
m

]2
(20)

in which the superscripts e and c denote the exact and the numerical solutions, respectively. The parameter, K
represents the total number of collocation points in the domain. The convergence rate for the solution of each
problem type is established based on the error measure.

One of the major advantages of this approach is that it can be applied to any type of hyperbolic equation
without any special treatment. The method is rather advantageous in the presence of severe variations in the
field. Also, it enables the construction of the nonlocal form of any type of flux function. Its implementation is
not complicated for those familiar with other numerical methods such as the Finite Element Method or the Finite
Difference Method, with the algorithms provided by Madenci et al. [18]. Furthermore, it is suitable for parallelization
since the discrete form of the equations results in a system of algebraic equations. The GPU architecture can
accelerate the computations significantly [24]. In a recent study, the PDDO has been applied to the solution of
rather challenging nonlinear PDEs such as Burgers, Swift–Hohenberg, Korteweg–de Vries, Kuramoto–Sivashinsky,
nonlinear Schrödinger, and Cahn–Hilliard equations [25]. Therefore, this method can be applied to higher order and
multidimensional hyperbolic systems because PDDO has the ability to approximate higher order derivatives with
great accuracy.
7
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5. Numerical results

The numerical results demonstrate the capability and robustness of the PDDO for solving linear and nonlinear
yperbolic PDEs by considering the following equations: (1) Linear advection equation, (2) Inviscid Burgers
quation, (3) Euler equations of gas dynamics, and (4) Eikonal equation for traveltime.

.1. Linear advection equation

Linear advection equation modeling the transportation of an incompressible fluid by a known velocity can be
xpressed as

∂u
∂t

+ υ
∂u
∂x

= 0 for 0 ≤ x ≤ L = 4 with t > 0 (21)

in which υ is the known advection velocity and u is the unknown motion of a scalar field. It is subjected to a
periodic boundary condition as

u (x = 0, t) = u (x = L , t) (22)

The initial condition is specified as

u (x, t = 0) = H (x − 1.5) − H (x − 2.5) (23)

where H (x − x0) is the Heaviside step function. The analytical solution to this equation is of the form [26]

u (x, t) = u(x − υt, t) (24)

By employing Euler’s first order explicit time integration (EE) and PDDO for spatial derivative, Eq. (21) is converted
to a system of algebraic equations in terms of the PD unknowns, ut+∆t

(k) = ut+∆t (x(k)) as

ut+∆t
(k) = ut

(k) − υ∆t

⎛⎝N(k)∑
j=1

ut
( j)

+g1
1(ξ(k)( j))ℓ( j)

⎞⎠ for k = 1, . . . , K = 401. (25)

The solution is constructed by considering a uniform grid spacing of ∆ = 0.01 with a horizon size of δ = 2∆ and
a time step size of ∆t = 0.01. As illustrated in Fig. 6, the periodic boundary condition is enforced by completing
the family of a point near the boundary.

The direction of information travel depends on the sign (characteristic direction) of the known velocity, υ as
shown in Fig. 7. The vector, υ indicates the characteristic direction. Therefore, the PD functions, +g1

1(ξ1(k)( j)) are
constructed by using the upwinded weight function with directional nonlocality (upwinding) as

w
(
|ξ | , κ+

; δ
)

= κ+e−4(|ξ |/δ)2
(26)

where

κ+
=

{
0.0 if ξ < 0

1.0 if ξ ≥ 0
(27)

Fig. 8 shows the comparison of the PD solution with the analytical solution for 0 ≤ t ≤ 4. It is clear that
the numerical dissipation exists; however, it is stable and not excessive as shown in Fig. 9. Also, the PD solution
captures the characteristic speed. Furthermore, the form of the initial condition as a step function is preserved in
future time steps.

Numerical stability analysis is performed by considering the scalar field at time (t + ∆t) as

ut+∆t (x(k)) = eα(t+∆t)eimx(k) (28)

where i =
√

−1, α is a real variable and m is a positive integer. Its substitution into Eq. (25) after certain algebraic
manipulations results in

eα∆t
= 1 −

υ∆t
∆x

⎛⎝N(k)∑
eim(ξk j )Ck

⎞⎠ = Re(G) + iIm(G) (29)

j=1

8
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For unconditional stability, von Neumann condition requires that the amplification factor,
⏐⏐eα∆t

⏐⏐ satisfy the following
ondition⏐⏐eα∆t

⏐⏐ =

√
(Re(G))2

+ (Im(G))2
≤ 1 (30)

Fig. 10 shows that stability limit and convergence for varying horizon sizes. It is stable for a weight function with
directional nonlocality. The stability limit is established by the maximum value of the Courant number C = υ∆t/∆x
which makes

⏐⏐eα∆t
⏐⏐ < 1. Its maximum is determined as max(υ∆t/∆x) ≈ 1.2 for δ = 2∆x.

For a symmetric weight function, it can be cast into the following form as⏐⏐eα(∆t)
⏐⏐ = 1 +

υ2∆t2

∆x2 H (m,∆x) (31)

here H (m,∆x) is defined as

H (m,∆x) = sin2(m∆x)
[
0.0382 cos2(m∆x) + 0.9653 + 0.3842 cos(m∆x)

]
(32)

ts derivative evaluation shows that H (m,∆x) ≥ 0 for any m and ∆x . Therefore, it is unconditionally unstable for
a weight function without directional nonlocality. Also, Fig. 11 shows that H (m,∆x) has nonnegative values for
ll m∆x ∈ [0, 2π ].

Convergence properties of the solution is examined by considering a smooth initial condition such as sin(πx)
with the same Courant number of C = 1. Fig. 12 shows the expected linear convergence rate of about unity for the
first order PDEs. The error, ε in Eq. (19) is measured against the analytical solution at t = 2.

.2. Inviscid Burgers equation

The inviscid Burgers equation allows modeling of complex shock and refraction waves. As previously considered
y [7], it is stated as

∂u
∂t

+ u
∂u
∂x

= 0 for0 ≤ x ≤ L = 2 for t > 0 (33)

In conservative form, it can be written as
∂u
∂t

+
∂ F
∂x

= 0 (34)

in which u is the unknown scalar field and F = u2/2. It is subjected to a periodic boundary condition of the form

u (x = 0, t) = u (x = L , t) (35)

The initial condition is specified as

u (x, t = 0) = sin πx (36)

Characteristic directions do not change; it can be positive or negative. It has an analytical solution of the from [27]
and solution at the desired timestep can be obtained by following characteristic information

u (x, t) = sin(πx − ut) (37)

By employing Euler’s first order explicit time integration and PDDO for spatial derivative, Eq. (33) is converted
to a system of algebraic equations in terms of the PD unknowns, ut+∆t

(k) = ut+∆t (x(k)) as

ut+∆t
(k) = ut

(k) −
∆t
2

(
N(k)∑
j=1

(
ut

(k)( j)

)2 ±g1
1(ξ1(k)( j))ℓ( j)) for k = 1, . . . , K = 201. (38)

s illustrated in Fig. 5, the periodic boundary condition is enforced by completing the family of a point near the
oundary. The solution is constructed by considering a uniform grid spacing of ∆ = 0.01 with a horizon size of
= 2∆ and a time step size of ∆t = 0.001.
The direction of information travel depends on the sign of the field variable, ±u. Therefore, the PD functions,

g1
1(ξ1(k)( j)) are constructed by using a weight function with directional nonlocality as(

| |
±

)
± −4(|ξ |/δ)2
w ξ , κ ; δ = κ e (39)

9
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Fig. 5. Description of families in a PD computational domain.

Fig. 6. Transfer of information to complete the families of points near the boundary.

where

κ+
=

{
0.0 if ξ < 0

1.0 if ξ ≥ 0
in the region u+ (40)

nd

κ−
=

{
1.0 if ξ < 0

0.0 if ξ ≥ 0
in the region u− (41)

egions, u+ and u− shown in Fig. 13 indicate the characteristic directions dictated by the sign of the field variable.
The PD solution is stable and captures the shock formation without any special treatment and remains single

alued. Fig. 14 shows a close agreement between the PD and numerical WENO technique with 4th the order
unge–Kutta method (RK4) [28]. It is a high-order approach with non-oscillatory behavior. The PD solution based
n a straightforward time integration scheme compares well with the results from a high order method employing
multi-step integration technique. The characteristic directions collide and form a shock and remains single valued

s shown in Fig. 15.
Shock occurrence time (break) time is tb = (1/π ); therefore, the error, ε in Eq. (19) is measured against the

haracteristic solution prior to this time with a Courant number of C = 1. As expected, the convergence rate shown
n Fig. 16 is close to unity.
10
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c
p

S

A

Fig. 7. Direction of information travel (upwinding) in domain of interaction for point x for linear advection equation.

The method should satisfy entropy condition in order to ensure the convergence of solution. Hence, it must be
onservative, consistent and monotonicity preserving because it is first order. The influence from downwind material
oints can be completely disregarded for nonlinear conservation laws if κ values in the weight function, Eq. (16)

are specified as

κ+
=

{
0 if ξ • υ < 0

1.0 if ξ • υ ≥ 0
(42)

By employing Euler’s first order explicit time integration (EE) and PDDO for spatial derivative with a horizon size of
δ = 2∆, Eq. (33) is converted to a system of algebraic equations in terms of the PD unknowns, ut+∆t

(k) = ut+∆t (x(k))
as

ut+∆t
(k) = ut

(k) −
∆t

2∆x

[
0.8994

(
ut

(k)

)2
− 0.7987

(
ut

(k−1)

)2
− 0.1006

(
ut

(k−2)

)2
]

(43)

It is worth noting that the summation of the coefficients of the flux terms associated with each family member
vanishes. The flux over a domain is only a function of inlet and outlet fluxes; therefore, the method is conservative.

The values of ut+∆t
(k) , ut

(k−1) and ut
(k−2) can be approximated based on TSE as

ut+∆t
(k) ≈ ut

(k) +
∂u
∂t

∆t (44a)

ut
(k−1) ≈ ut

(k) −
∂u
∂x

∆x (44b)

and

ut
(k−2) ≈ ut

(k) −
∂u
∂x

2∆x . (44c)

ubstituting from Eq. (44) into Eq. (43) results in

ut
(k) +

∂u
∂t − ut

(k)

∆t
+

1
2∆x

[
0.8994

(
ut

(k)

)2
− 0.7987

(
ut

(k) −
∂u
∂x

∆x
)2

− 0.1006
(

ut
(k) −

∂u
∂x

2∆x
)2
]

= 0 (45)

fter some modifications, this expression can be recast as
∂u
∂t

+
1

2∆x

(
2 × 0.7987ut

(k)

∂u
∂x

∆x + 4 × 0.1006ut
(k)

∂u
∂x

∆x
)

−
1

2∆x

(
0.7987

(
∂u
∂x

∆x
)2

+ 0.1006
(

∂u
∂x

2∆x
)2
)

= 0
(46)
11
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Fig. 8. Comparison of PD and analytical solutions for linear-advection equation as time progresses (a) t = 0, (b) t = 1, (c) t = 2, and (d)
t = 4.

Fig. 9. PD solution of linear advection equation.
12
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Fig. 10. Numerical stability of linear advection equation solution for varying horizon and directional nonlocality.

Fig. 11. Nonnegative variation of H (m,∆x) without directional nonlocality for m∆x ∈ [0, 2π ].

Fig. 12. Convergence behavior of linear advection equation for a varying grid size.
13
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I

Fig. 13. Domain of interaction for point x depending on positive and negative characteristic directions.

in which the last term go to zero as ∆x → 0 and canceling out ∆x in the second term results in

∂u
∂t

+ u
∂u
∂x

≈ 0 (47)

The discrete version of the equation converges to the analytic form, Eq. (33) as both ∆t and ∆x → 0. Therefore,
the method is consistent. Higher order terms are disregarded since they include higher powers of ∆t or ∆x as
multipliers. The remainder terms or products of remainder terms also satisfies the consistency condition.

The method is monotonicity preserving if it satisfies the well-known following condition [26]

∂ut+∆t
(k)

∂ut
(k)

≥ 0 (48)

f the left hand side is assumed as the upwind direction, i.e., ut
(k−1) > 0 and ut

(k−2) > 0, the following condition is
obtained from Eq. (43) for monotonicity preserving

1
0.8994

>
∆t
∆x

ut
(k) (49)

or a more strict condition can be defined as

1.1 >
∆t
∆x

|max(u)| (50)

Provided that this condition is satisfied, the PDDO method is conservative, consistent and monotonicity preserving;
thus, entropy stable.

5.3. Euler equations of gas dynamics

In conservative form, the equations of gas dynamics can be stated as [6]

∂Q
∂t

+
∂F
∂x

= 0 for 0 ≤ x ≤ 10 (51)

where the vectors Q and F are defined as

Q =

⎡⎢⎢⎣
ρ

ρu

⎤⎥⎥⎦ and F =

⎡⎢⎢⎣
ρu

ρu2
+ p

⎤⎥⎥⎦ (52)
E (E + p) u
14
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a

Fig. 14. Comparison of PD and analytical solutions for inviscid Burgers equation as time progresses (a) t = 0, (b) t = 0.3, (c) t = 0.45,
nd (d) t = 0.6.

Fig. 15. PD solution of inviscid Burgers equation.
15
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p

w

z
a

Fig. 16. Convergence behavior of Burgers equation for varying grid size.

Fig. 17. Initial conditions for Sod’s shock tube problem.

where density, velocity and pressure ρ, u and p, respectively, represent the primitive variables. The internal energy
er unit mass, e and total energy per unit volume, E are defined as

e =
p

ρ (γ − 1)
(53)

and

E = ρe +
1
2
ρu2 (54)

ith the gas constant, γ = 1.4.
The initial condition consists of high density and pressure on the left, low density and pressure on the right and

ero velocity on both sides of the membrane in Sod’s shock tube as shown in Fig. 17. The analytical solution is
vailable in [6].

It can be recast as

∂Q
+ J

∂Q
= 0 for 0 ≤ x ≤ 10 (55)
∂t ∂x
16
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where the Jacobian matrix J is determined as

J =

⎡⎢⎢⎣
u ρ 0

0 u 1/ρ

0 γρ u

⎤⎥⎥⎦ (56)

Its distinct eigenvalues are λ−
= u +c, λ0 = u and λ+

= u −c with c =
√

γ p/ρ representing the adiabatic speed of
ound. One of them only depends on the direction of fluid velocity, and the other two depend on the fluid velocity
nd speed of sound (acoustic waves). The corresponding eigenvectors representing the characteristic directions are

r+
=

⎧⎪⎪⎨⎪⎪⎩
−ρ/c

1

−ρc

⎫⎪⎪⎬⎪⎪⎭ , r0 =

⎧⎪⎪⎨⎪⎪⎩
1

0

0

⎫⎪⎪⎬⎪⎪⎭ and r−
=

⎧⎪⎪⎨⎪⎪⎩
ρ/c

1

ρc

⎫⎪⎪⎬⎪⎪⎭ (57)

ased on the flux splitting method introduced by Van Leer [29], the flux vector is split as

F = F+
+ F− (58)

n which

F+
=

ρ

4c
(u + c)2

⎡⎢⎢⎢⎢⎢⎣
1

(γ − 1) u + 2c
γ

[(γ − 1) u + 2c]2

2
(
γ 2 − 1

)

⎤⎥⎥⎥⎥⎥⎦ and F−
= −

ρ

4c
(u − c)2

⎡⎢⎢⎢⎢⎢⎣
1

(γ − 1) u − 2c
γ

[2c − (γ − 1) u]2

2
(
γ 2 − 1

)

⎤⎥⎥⎥⎥⎥⎦ (59)

ith this splitting, Eq. (51) can be recast as

∂Q
∂t

+
∂(F+

+ F−)
∂x

= 0 for 0 ≤ x ≤ 10 (60)

By employing Euler’s first order explicit time integration and PDDO for spatial derivative, Eq. (60) is converted to
a system of algebraic equations in terms of the PD unknowns, Qt+∆t

(k) = Qt+∆t (x(k)) as

Qt+∆t
k = Qt

k −

N(k)∑
j=1

F+

(k)( j)
+g1

1(ξ1(k)( j))A( j) −

N(k)∑
j=1

F−

(k)( j)
−g1

1(ξ1(k)( j))ℓ( j) for k = 1, . . . , K = 101. (61)

The solution is constructed by considering a uniform grid spacing of ∆ = 0.01 with a horizon size of δ = 2∆ and
a time step size of ∆t = 0.01.

Consistent with the splitting (direction of information travel), the PD functions, ±g1
1(ξ1(k)( j)) for F+ and F− are

onstructed by using the weight function with directional nonlocality shown in Fig. 18 as

w
(
|ξ | , κ±

; δ
)

= κ±e−4(|ξ |/δ)2
(62)

n which

κ+
=

{
0.0 if ξ < 0

1.0 if ξ ≥ 0
in the region F+ (63)

nd

κ−
=

{
1.0 if ξ < 0

0.0 if ξ ≥ 0
in the region F− (64)

egions, F+ and F− shown in Fig. 18 indicate the characteristic directions dictated by the sign of the field variable.

The PD predictions capture the analytical solution [6] as shown in Fig. 19. It captures the shock and rarefaction
ithout any special treatment. As evident in the solution for density, it is composed of a shock propagating to the

ight, while a left-going rarefaction forms. In between these two waves, there is a jump in the density, which is the

ontact discontinuity. It accurately captures the shock and contact discontinuities.

17
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Fig. 18. Domain of interaction for point x depending on the flux splitting directions.

5.4. Eikonal equation

The isotropic Eikonal equation for travel time, T = T (x, y, z) is of the form [19](
∂T
∂x

)2

+

(
∂T
∂y

)2

+

(
∂T
∂z

)2

=
1

υ2(x, y, z)
for (x, y, z) ∈ [0, L = 0.5 km] (65)

n which υ(x, y, z) is the known velocity field. It is subjected to a constraint at the source location, xs =

0.25, 0.25, 0.25) as T (xs) = 0. The velocity field shown in Fig. 20, has constant velocity gradient in z− direction
s gz = 1.0 s−1 and υ(xs) = 2.25 km/s. The analytical solution is of the form [19]

T (x) =
1√
g2

z

cosh−1

(
1 +

g2
z |x − xs |

2

2υ (x) υ (xs)

)
(66)

Replacing the local derivatives with their PD counterparts in the Eikonal equation leads to its discrete form as⎛⎝N(k)∑
j=1

T(k)( j)g100
1 (ξ1(k)( j), ξ2(k)( j), ξ3(k)( j))V( j)

⎞⎠2

+

⎛⎝N(k)∑
j=1

T(k)( j)g010
1 (ξ1(k)( j), ξ2(k)( j), ξ3(k)( j))V( j)

⎞⎠2

+⎛⎝N(k)∑
j=1

T(k)( j)g001
1 (ξ1(k)( j), ξ2(k)( j), ξ3(k)( j))V( j)

⎞⎠2

=
1

υ2(x, y, z)
for k = 1, . . . , K

(67)

here K is the total number of PD points in the discretization. Similarly, the condition T (xs) = 0 can be discretized
as

T (xs, ys, zs) =

N(s)∑
j=1

T(s)( j)g000
1 (ξ1(s)( j), ξ2(s)( j), ξ3(s)( j))V( j) = 0 (68)

his constraint condition is enforced by deleting the corresponding row in the resulting system of equations.
The weight function is updated depending on the location of the point inside the family and the gradient direction

f the travel time at the point of interest as illustrated in Fig. 21. It is expressed as

w |ξ | , κ; δ = κe−4(|ξ |/δ)2
(69)
( )

18
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5
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i
e

Fig. 19. PD solutions for the Sod shock tube: (a) density, (b) pressure, and (c) velocity at t = 1.2.

with

κ =

{
0.1 if ξ · ∇T < 0

1.0 if ξ · ∇T ≥ 0
(70)

The domain is discretized with uniform grid spacing of ∆ = 0.01 km in each direction with k = 1, . . . , K =

1 × 51 × 51. The solution to this non-linear system of algebraic equations is constructed by considering a horizon
ize of δ = 2∆.

The resulting non-linear algebraic system of equations can be expressed as

F(u) = 0 (71)

n which the vector u contains the PD unknowns, T (x( j)) at each point. The nonlinear equations can be solved by
mploying the Newton–Raphson method in an iterative manner. Hence, the solution can be expressed through a
19
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Fig. 20. Velocity field with a uniform gradient in the z-direction.

Fig. 21. Weight function with directional nonlocality for the Eikonal equation.

recursive form as(
∂F
∂u

)(n)

∆u(n+1)
= −F(un) (72)

or

∆u(n+1)
= −J−1(u(n))F(un) (73)

with

J(u(n)) =
∂F(u(n))

(74)

∂u
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Fig. 22. Real and imaginary parts of the eigenvalues of −J corresponding weight function: (a) without directional nonlocality (symmetric),
nd (b) with directional nonlocality.

n which u(n+1)
= u(n) + ∆u(n+1) with n representing the iteration number in the algorithm and ∆u(n+1) the

ncremental unknown vector.
The boundedness of the solution u depends on the behavior of −J−1. Therefore, the method is stable if the

eal parts of all eigenvalues of −J−1 are negative. Otherwise, it is unstable. It is worth noting that the real parts
f the eigenvalues of −J−1 and −J have the same signs. Therefore, examining the eigen spectrum of −J is
ufficient. Fig. 22 shows the real and imaginary parts of the eigenvalues of −J corresponding to the weight function
ith and without directional nonlocality. The Jacobian, −J corresponds to the %2 randomly perturbed analytical

olution of the isotropic Eikonal equation. The weight function with directional nonlocality results in eigenvalues
ith only negative real parts. However, the symmetric weight function without directional nonlocality results in

igenvalues with both positive and negative real parts. This ascertains the stability and necessity of the modification
f the symmetric weight function using the gradient of the travel times. Also, the weight function with directional
onlocality ensures the numerical stability of the solution procedure [30].

Initial guess is specified as spheres with different radii centered at the source location in the form

Tini t =
(x − 0.25)2

+ (y − 0.25)2
+ (z − 0.25)2

2
(75)

he Jacobian matrix is evaluated through automatic differentiation, and the equations are solved by employing the
eneralized Minimal RESidual method (GMRES) with ILU preconditioner. Depending on the position of family
embers and the gradient direction of the traveltime, the weight function and the PD functions are updated during

ach iteration. The convergence of solution is achieved when ∥F(u)∥ < 1.5 × 10−3. As shown in Fig. 23, the PD
olution captures the analytical solution. The error measure, Eq. (20) of PD solution against the reference solution
s relatively uniform as shown in Fig. 24.

. Conclusions

The study presents the first attempt in the application of the PDDO to solve challenging hyperbolic PDEs. PDDO
onverts the local form of differential equations to their nonlocal form with an internal parameter that defines the
xtent of nonlocal effects. Here, a modified weight function, referred to upwinded-weight function, is introduced
hat invokes the direction of information travel (upwinding) in a natural way. This choice results in a stable PDDO
iscretization for the solution of such problems. The PDDO can be paired with well-known flux splitting methods
n a consistent manner. Numerical stability is always ensured and the solutions to these equations are achieved in
21
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Fig. 23. Comparison of PD traveltimes predictions with the analytical solution.

Fig. 24. Absolute error in PD solution against the analytical solution for isotropic Eikonal equation.

a unified manner without any special treatment. The results agree well with the analytical and analytical/reference
solutions.
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