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A B S T R A C T   

In this study a computational framework is outlined for modeling the mechanical response of structural masonry 
at both meso and macroscale. The mesoscale approach accounts for the presence of distinct constituents (i.e., 
bricks and mortar joints) and their geometric arrangement. A constitutive law with embedded discontinuity, 
combined with the level-set approach, is used to model the onset and discrete propagation of localized damage in 
these constituents. The approach is verified against a range of experimental data published in the literature. It is 
shown that the proposed framework can adequately predict the load-deformation response, as well as the 
fracture pattern under combined loading conditions. The macroscale approach incorporates the notion of 
anisotropy parameter whose value depends on the orientation of the principal stress axes in relation to the axes of 
material symmetry. The material parameters/function appearing in this approach are identified from the ‘virtual 
data’ generated by a mesoscale analysis of masonry panels subjected to biaxial tension–compression at different 
orientations of the bed joint. Thus, the mesoscale considerations serve as a bridge for upscaling to the macrolevel.   

1. Introduction 

Numerical analysis of masonry structures can be conducted at either 
meso or macroscale. The former approach is suitable for smaller scale 
structures (e.g., shear walls, reduced scale models, etc.). For large 
structures (buildings, arch bridges, etc.), however, examining individual 
components (i.e., units/joints) and their interaction would be compu
tationally very costly. Therefore, a more reasonable approach is that in 
which the masonry is considered as a continuum with a microstructure. 

In engineering practice, the design and retrofit of masonry structures 
follows a set of guidelines provided by different building codes. The 
methodologies employed in these codes, i.e. limit state design and/or 
empirical methods, are quite simplistic. They do not address the basic 
issues that govern the mechanical response of masonry at the macro
scale, such as the anisotropy of strength and deformation properties, 
discrete propagation of damage, environmental degradation, etc. Thus, 
although the general guidelines are useful, they are primarily qualitative 
and cannot be perceived as a reliable mechanical assessment, particu
larly when dealing with structures of a strategic importance that often 
have a complex geometry.  

A better representation of the behaviour of structural masonry may 
be obtained by conducting the finite element (FEM) analysis. In recent 
years this has become a standard in the engineering design process. For 
the mesoscale simulations, the constituents themselves (i.e. units and 
mortar joints) may be considered as isotropic (Minga et al., 2018). In this 
case, the primary difficulty is to deal with the notion of localized 
deformation. The latter involves the presence of discontinuities in the 
displacement field or its gradient, referred to as strong or weak discon
tinuities (Simo et al., 1993), and is associated with the strain-softening 
response. In this case, the use of classical continuum approaches, 
which do not incorporate any measure of internal scale, results in a 
spurious mesh-dependency of the solution. In order to remedy the 
problem, the constitutive equations have been enhanced to incorporate 
non-local theories (Bažant & Jirásek, 2002; Jirásek, 2004) or visco
plastic regularization (Needleman, 1988; Niazi et al., 2012). Both these 
approaches, however, have limitations that stem from ambiguity in 
specifying the characteristic length and/or the viscosity parameter, 
which are not uniquely defined. Moreover, such continuum enhance
ments do not explicitly incorporate the rate form of traction– displace
ment discontinuity relation for the fracture zone, which is intrinsic in 
describing the softening phenomenon. 
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An alternative way to deal with localized deformation is to invoke 
the embedded discontinuity approach (cf. Wells & Sluys, 2000, 2001; 
Jirasek and Zimmermann, 2001; Alfaiate et al., 2003; Benkemoun et al., 
2010). In this approach, the discontinuities are embedded directly 
within a finite element. Both weak and strong discontinuities can be dealt 
with by addition of discontinuous functions to either strain or 
displacement fields of standard finite elements. In case of strong dis
continuities, additional global degrees of freedom, i.e. nodal displace
ments associated with enhanced modes, are introduced and additional 
shape functions are added. There are different versions of the embedded 
discontinuity formulation including discrete approaches in which the 
crack path and the displacement jumps are continuous across element 
boundaries. The literature on this topic is very extensive and a 
comprehensive survey, which includes a comparison between various 
approaches, is provided in Jirásek (2000). Another enrichment tech
nique, which has been developed in the context of partition of unity 
method, is the Extended Finite Element Method (XFEM) (Belytschko 
et al., 2001; Belytschko & Black, 1999; Moës & Belytschko, 2002). 
Again, a comparative study of this approach in relation to other FE 
techniques for capturing strong discontinuities is provided by Oliver 
et al. (2006). 

Both the above-mentioned approaches are rigorous and have been 
applied to a broad spectrum of engineering problems. Their main limi
tation, particularly in case of XFEM, is a high computational cost that 
stems primarily from incorporation of additional degrees of freedom 
that account for the presence of discontinuities. The approach employed 
in this work is conceptually different in the sense that the velocity 
discontinuity is explicitly embedded in the constitutive law. The latter 
incorporates a length scale parameter, which is defined in an explicit 
manner. The approach was originally proposed in the early 1980′s 
(Pietruszczak and Mróz, 1981) and was later modified to redefine the 
internal length parameter (cf. Pietruszczak, 1999). Its implementation in 
the FEM platform is straightforward, as no enriched degrees of freedom 
are required. An enhanced version, which incorporates a discrete crack 
tracing scheme, is provided in Haghighat & Pietruszczak (2015, 2016). 
The last references also give a direct comparison of the numerical per
formance of this approach in relation to XFEM methodology. 

The macroscale analysis requires the assessment of equivalent me
chanical properties for a given type of masonry layout. This can be 
accomplished by application of the mathematical theories of homoge
nization. The latter have been applied in the context of both periodic 
(Sacco, 2009; Anthoine, 1997; De Buhan & De Felice, 1997; Pande et al., 
1989) as well as non-periodic media (Cluni & Gusella, 2004) and a 
comprehensive review of different strategies is provided in Lourénço 
et al. (2007). The main difficulty in this approach is the assessment of 
properties in inelastic range, which requires a numerical homogeniza
tion. In this case, the simulations are carried out using a representative 
elementary volume (REV) from which the equivalent (i.e., volume 
averaged) properties are acquired (e.g., Van der Sluis et al., 2000). The 
computational homogenization techniques have also been extensively 
used in the context of multiscale modeling of heterogeneous materials 
with complex microstructures. The literature on this topic is very 
extensive and a concise review is provided, for example, in Geers et al. 
(2010). The approach comprises a multi-level finite element analysis, 
referred to as FE2 scheme (cf. Smit et al., 1998; Feyel, 2003; Nguyen 
et al., 2011), which employs meshing at macro-level (entire structure) 
and micro-level (REVs). An application of this methodology to masonry, 
involving simulation of some material tests as well as a shear wall test, is 
provided by Massart et al. (2007). The approach is rigorous, but 
computationally very expensive and its application in the context of 
large-scale masonry structures is currently not feasible. 

In general, the key issues in modeling the mechanical response of 
masonry at the macroscale involve a proper description of inherent 
anisotropy and, once again, the localized nature of damage. The 
anisotropy manifests itself in the directional dependence of strength and 

deformation properties. This has been evidenced by testing scaled ma
sonry panels under biaxial load at different orientations of the bed joints 
(c.f. Drysdale & Khattab, 1995; Page, 1981; Page, 1983). The results of 
these tests provided a valuable information that has been employed to 
specify the conditions at failure. The existing formulations defining the 
phenomenologically based failure criteria usually incorporate linear and 
quadratic terms in stress components referred to principal material axes 
(e.g. Tsai & Wu, 1971). Examples of application of this class of criteria to 
structural masonry include the work of Lourénço et al. (1997) and Berto 
et al. (2002). A more rigorous approach is associated with incorporating 
the notion of a fabric tensor and establishing its correlation with the 
strength properties (Boehler & Sawczuk, 1977; Cowin, 1986). The 
disadvantage of the latter approach, however, is the fact that the general 
framework incorporates numerous material functions whose identifi
cation requires an elaborated experimental program which cannot be 
carried out for any practical engineering problem. A simplified and a 
more pragmatic methodology was introduced by Pietruszczak & Mroz 
(2001) whereby the classical isotropic criteria have been enhanced by 
incorporating the concept of a spatial distribution of strength parame
ters. Two different approaches have been developed, viz. a critical plane 
and a microstructure tensor approach. In the former, the failure criterion 
is expressed in terms of traction components, while the orientation of the 
localization plane is defined as a constrained optimization problem. In 
the approach incorporating the microstructure tensor, a scalar anisot
ropy parameter is introduced whose value is a function of relative 
orientation of the principal stress triad with respect to the eigenvectors 
of the microstructure tensor. The latter methodology has recently been 
applied by Pietruszczak and Mohammadi (2020) to define the macro
scopic failure criterion using the experimental data reported by Page 
(1981, 1983). 

This paper is a continuation of the work reported by Pietruszczak and 
Mohammadi (2020). Its primary focus is the development of a reliable 
computational scheme for the mesoscale analysis of structural masonry. 
The approach incorporates a novel technique for dealing with the bed 
and head joints, whose presence is accounted for by employing a 
constitutive law with embedded discontinuity (Haghighat & 
Pietruszczak, 2015). This allows the use of a simple structured mesh 
which significantly reduces the computational cost of analysis. The 
procedure also accounts for the onset of new macrocracks forming 
within the masonry units and the discrete tracing of their propagation by 
means of the level set technique. The purpose of this mesoscale approach 
is two-fold. First, such an approach can be used for an independent 
analysis of smaller scale masonry structures. At the same time, it can 
serve the purpose of generating a ‘virtual data’ for masonry panels tested 
at different orientations relative to the direction of loading. The latter 
information can then be employed in the context of specification of 
material functions required for the analysis of large masonry structures. 
Thus, the mesoscale considerations serve as a bridge for upscaling to the 
macroscale. 

In the next section the mesoscale formulation and its numerical 
implementation are discussed. Subsequently, the framework is verified 
against some benchmark problems involving simulation of experimental 
tests on brick–mortar bond and masonry wallets. Later, a comprehensive 
study is provided investigating the fracture mechanism in masonry 
panels tested by Page (1981, 1983). Different loading conditions and 
different orientations of the panels are considered. Finally, the macro
scale approach is outlined, and the results obtained from the mesoscale 
analysis are employed to identify the material functions appearing in the 
failure criterion incorporating the scalar anisotropy parameter. 

2. Mesoscale formulation and its implementation 

The mesoscale analysis of structural masonry requires the informa
tion on properties of constituents (bricks, mortar joints) and their geo
metric arrangement. The constituents themselves may be perceived as 
isotropic and, in the range of homogeneous deformation, their 
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mechanical properties can be described by standard continuum ap
proaches. The weakest link in the structural masonry are the 
brick–mortar interfaces, which require a contact law relating the trac
tion rate to velocity discontinuity. The failure of constituents is often 
linked with the onset and propagation of localized damage associated 
with unstable strain-softening response. The onset of localization is 
usually defined by invoking a stress or energy-based failure criterion or, 
in case of elastoplastic or damage-based idealization, it may be 
perceived as a bifurcation problem. The latter involves detection of 
singularity of the so-called acoustic tensor (Rudnicki & Rice, 1975) whose 
eigenvectors determine the orientation of fracture plane. In this work, 
the constituents themselves are considered as elastic-brittle. Note that 
there is no conceptual difficulty in considering the bricks/mortar as 
inelastic. However, in structural masonry the irreversible deformation at 
the macroscale is primarily due to sliding and separation along the in
terfaces, so that the former effects seem negligible. In this section, the 
details on mesoscale modeling are provided. The focus is on the 
description of deformation process in a domain intercepted by discon
tinuities, which is relevant for both brick units and interfaces, as the 
latter are treated as being embedded in the adjacent homogenous 
continuum. 

2.1. Mathematical formulation in the presence of discontinuities 

In the presence of localization, the average mechanical properties 
within a domain containing a fracture may be assessed by incorporating 
a constitutive law with embedded discontinuity (CLED, cf. Haghighat & 
Pietruszczak, 2015; Pietruszczak, 1999). For this purpose, consider a 
referential volume ΔΩ, which includes the intact parts ΔΩ+ and ΔΩ− , 
intercepted by a fractured region of surface area of ΔΓd and a negligible 
thickness (compared to other dimensions). In this case, the discontin
uous velocity field v may be defined as a sum of two continuous func
tions v̂ and ṽ, combined with a discontinuous Heaviside step function 
ℋΓd as 

v = v̂ +ℋΓd ṽ; EvF = v+ − v− = EℋΓd Fṽ (1)  

where EvF is the velocity jump across the localized zone. Using Eq. (1), 
the average velocity gradient in a referential volume ΔΩ can be defined 
as 

∇xv= 1
ΔΩ

∫

ΔΩ
∇xv dΩ

=
1

ΔΩ

∫

ΔΩ
∇x v̂ dΩ+

1
ΔΩ

∫

ΔΩ+

∇xṽ dΩ+
1

ΔΩ

∫

ΔΓdtd

(
ṽ⊗∇xℋΓd

)
dΩ (2)  

where 

∇xℋΓd = EℋΓd FδΓd n (3)  

Here, δΓd is the Dirac delta function and n is the outward normal to the 
discontinuity surface. Substituting Eq. (3) into Eq. (2) and using the 
second equation in (1) leads to 

∇xv =
1

ΔΩ

∫

ΔΩ
∇x v̂ dΩ +

1
ΔΩ

∫

ΔΩ+

∇xṽ dΩ

+
1

ΔΩ

∫

ΔΓd

EvF ⊗ n dΓd

(4)  

The first two terms appearing on the right-hand side of Eq. (4) represent 
the volume average of the velocity gradient in the intact material, while 
the last term is proportional to the average value of EvF ⊗ n over the 
crack surface area ΔΓd, i.e 

∇xv(1) =
1

ΔΩ

∫

ΔΩ
∇x v̂ dΩ +

1
ΔΩ

∫

ΔΩ+

∇xṽ dΩ;

ġ ⊗ n =
1

ΔΓd

∫

ΔΓd

EvF ⊗ n dΓd

(5)  

The symmetric parts of these operators define the corresponding average 
strain rates. Thus, the total strain rate can be expressed as 

ε̇ = ε̇(1) + χ(ġ ⊗ n)s (6)  

where ε̇(1) =
(
∇xv(1) )s is the average strain rate in the intact material, 

while the second term gives the contribution associated with the local
ized deformation. Here, χ− 1 is a length scale parameter defined as the ratio 
of the referential volume to the surface area of the fractured region (i.e. 
χ− 1 = ΔΩ/ΔΓd). 

The velocity jump ġ is determined by imposing the traction conti
nuity condition across the localized region. Thus, 

ṫ − n⋅σ̇ = K⋅ġ − n⋅D⋅ε̇(1) = 0 (7)  

where t is the traction vector, K is the second order stiffness operator for 
the fractured zone, σ̇ is the macroscopic stress rate and D is the fourth- 
order elasticity tensor which defines the properties in the intact region. 
Combining the above equations and rearranging leads to the localization 
law 

ġ =
[
(K + χn⋅D⋅n)− 1

⊗ n
]
: [D : ε̇] (8)  

Finally, using Eqs. (6) and (8), the constitutive relation is obtained as 

σ̇ = D : ε̇;

D =
{

D − χD :
[
n ⊗ (K + χn⋅D⋅n)− 1

⊗ n
]
: D

} (9)  

where D is the equivalent tangential stiffness operator which depends 
on the properties of both constituents and the scale parameter χ, the 
latter defined at the element level based on the orientation and location 
of the macrocrack. 

2.2. Modeling of constituents 

2.2.1. Embedded brick–mortar interfaces 
The approach advocated here for FEM analysis is to consider the 

interfaces as being embedded in the adjacent continuum. Thus, a simple 
structured mesh may be used, Fig. 1, in which the presence of joints is 
accounted for by employing standard FEM elements in which mechan
ical properties are defined by the constitutive law with embedded 
discontinuity (9). In this case, the discontinuity surface ΔΓd is explicitly 
identified with the brick–mortar interface, which represents the weakest 

Fig. 1. FEM discretization of structural masonry (a) representation incorpo
rating CLED (red line shows interfaces embedded within elements); (b) stan
dard representation incorporating discretization of mortar joints together with 
interface elements (thick black lines). (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of 
this article.) 
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link in the masonry architecture. Fig. 1a show a schematic discretization 
of a periodic unit with running bond pattern using the proposed meth
odology. At the same time, Fig. 1b depicts a typical mesh incorporating 
the physical presence of mortar joints. The latter requires a finer dis
cretization employing a structured mesh together with a set of interface 
elements. Apparently, the advocated approach is bound to be compu
tationally more efficient. In addition, the numerical problems inherent 
to the use of interface elements, such as ill-conditioning of the stiffness 
matrix, poor convergence of the solution and instability of the numerical 
integration of stress rate equations (cf. Villard, 1996), can be avoided. 

The implementation of the proposed methodology requires the 
specification of the stiffness operator K appearing in the constitutive 
relation (9). In the present study, the properties of brick–mortar inter
face have been described using an elastic-strain softening idealization. 
In particular, the Coulomb failure function with tension cut-off zone has 
been employed, i.e. 

F =

{
τ − (c − μσ) , σ < σt
σ − σt , σ ≥ σt

(10)  

where μ = tanϕ, with ϕ being the friction angle, and σ, τ represent the 
magnitudes of normal and tangential components of the traction vector 
t. Here, F < 0 implies an elastic response, while in the plastic regime the 
degradation functions have been selected as 

σt = ftexp
(

−
ft

Gf
gn

)

; c = coexp( − αgt) ≥ μσt;

μ = μo + (μr − μo)

(
co − c

co

) (11)  

Here, the subscripts o and r refer to initial and residual values of c and μ, 
Gf the is tensile fracture energy release rate, α is a material parameter, 
while gn and gt are normal and shear components of accumulated plastic 
part of displacement jumps. 

The equivalent stiffness operator D is determined using Eq. (9), in 
which D defines the elastic properties of the adjacent continuum. Here, 
for F < 0 there is K = Ke, while for an active loading process K is 
established using functional forms (10) and (11). In the latter case, a 
standard plasticity procedure is followed, invoking additivity postulate 
together with the consistency condition. The framework employed here 
incorporated an associated flow rule in tension and non-associated 
(zero-dilatancy) rule in compression regime. 

2.2.2. Brick units 
The bricks have been also considered here as elastic prior to the onset 

of localization. The transition was defined via a standard Mohr-Coulomb 
criterion with Rankin’s cut-off, which stipulates that in compression 
regime the macrocracks form at ∓(45◦

+ ϕ/2) with respect to the di
rection of minor principal stress, whereas in tension their direction is 
orthogonal to that of maximum tensile stress. The crack propagation 
process was simulated using the CLED framework, viz. Eq. (9). In the 
strain-softening regime, the representation analogous to that of eqs. 
(10)-(11) was employed. However, the degradation law for the friction 
coefficient was rephrased as 

μ = μo +(μr − μo)

(
co − c

co

)

; μo =
τ − co

σ (12)  

Thus, in this case the parameter μo is not a material constant but is 
defined explicitly from the condition that, at the onset of localization, 
the components of traction vector satisfy F = 0, Eq. (10). Again, given 
the functional form (12), the stiffness operator K, Eq. (9), can be 
determined following the standard plasticity procedure. 

As mentioned earlier, for structural masonry the failure mode typi
cally involves fracture along the bed and head joints, whose orientation 
is defined a priori. However, for certain loading histories, the damage 
process may also involve the onset and propagation of fractures through 

the brick units. In such a case, a suitable algorithm for a discrete crack 
tracking is required. In this work, the geometry of propagating crack has 
been traced by employing the level-set method (Adalsteinsson & 
Sethian, 1999; Stolarska et al., 2001). The latter is a numerical technique 
used to represent the location of macrocracks, including the position of 
their tips. The approach provides information that is particularly useful 
when dealing with multiple fractures and/or intersecting cracks and 
allows to quickly locate the potential elements in the vicinity of crack 
tips, where the fracture is most likely to propagate. The benefits of level- 
set approach for tracing discrete discontinuities have been discussed 
extensively in several studies (cf. Stolarska et al., 2001, Belytschko et al., 
2001). 

According to this approach, a propagating discontinuity surface 
Γd can be defined as the zero level-set of a function ϕ(x, t), 
i.e., Γd = {x|ϕ(x, t) = 0}. Commonly, the signed distance function 
expressed as ϕ(x) = sign{n⋅(x − xΓ)}min‖x − xΓ‖ is used as a level set 
function, and it has been employed here for tracing the crack path. The 
gradient of ϕ(x, t) defines the direction normal to the fracture surface, 
which is required in implementation of CLED approach. A second 
level-set is often employed to trace crack tips (Stolarska et al., 2001). 
Combination of these two level-sets defines a potential zone for fracture 
propagation and permits tracking of the moving crack without 
numerical noise. 

A schematic example of crack initiation and propagation in a dis
cretized domain is shown in Fig. 2. The initial crack is assumed to pass 
through the centroid of the element, Fig. 2a, and is shown by the solid 
red line. The level set function is constructed in the domain, with the 
zero level-set as depicted by the dashed red line. Elements along the 
crack path are highlighted in yellow and the crack tip neighbour ele
ments are highlighted in green. An iterative algorithm is then started in 
which the crack propagates through the crack path elements until 
equilibrium is reached. Fig. 2b shows the cracked elements (blue) and 
location of the crack inside the elements. The exact location of the crack 
in each element is determined using the intercept with the element 
boundary and the given crack orientation. The level set is updated in the 
proceeding increment and if stress conditions at the tip elements result 
in a change in crack direction, the potential elements engaged in further 
propagation of the cracked zone are identified, as shown in Fig. 2b. 

3. Numerical implementation and verification of the mesoscale 
framework 

3.1. Simulation of tests on brick–mortar bond 

The first set of numerical examples pertains to simulation of the 
tensile and shear tests on brick–mortar bond as reported by 
Van der Pluijm (1997, 2000). The tests were displacement-controlled and 

Fig. 2. (a) Schematic crack initiation and (b) Crack propagation involving a 
change in orientation. Dashed line shows the location of zero level set, solid red 
line and blue elements show crack location, green elements indicate crack tip, 
yellow elements identify potential elements for crack propagation. (For inter
pretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.) 
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were performed on specimens of two brick units, with dimensions 
200 × 100 × 50 mm (in shear) and 100 × 100 × 50 mm (in tension), 
separated by a bed joint. For shear tests, the specimens were subjected to 
normal stress of intensity between 0.1 and 1.0 MPa, and subsequently 
sheared by imposing the displacement parallel to the joint. The experi
mental program was comprehensive, as approx. 50 tests were conducted; 
however, the scatter of experimental data was significant (i.e., coefficient 
of variation of 20–40%). 

The numerical analysis was conducted using a mesh incorporating 
880 and 600 eight-node cubic elements in shear and tension, 

respectively. The geometry of the problem and the FEM discretization 
are shown in Fig. 3. For axial tension, the bottom of the specimen was 
fixed, and a uniform vertical displacement was applied at the top. For 
simulations of shear test, the top and the bottom of the sample were 
fixed in horizontal and vertical directions, respectively. The loading 
process consisted of applying a vertical force, after which the horizontal 
displacement was imposed at the bottom surface. The material param
eters employed in the analysis are provided in Table 1. The values of 
these parameters were selected based on the data reported by Van der 
Pluijm (1993, 1997). Note that the experimental results do not include 
any explicit information on the material constants that govern the strain 
softening characteristics, viz. Eq. (11). Therefore, some parametric 
studies have been conducted on assessing their impact on the numerical 
predictions. 

The main results of simulations are provided in Figs. 3-4. Fig. 3 de
picts the evolution of damage along the brick–mortar interface super
imposed on the displacement field. The corresponding mechanical 
characteristics, i.e. traction vs. displacement, are shown in Fig. 4. Here, 
Fig. 4a depicts the sensitivity of the post-peak response to the selected 
value of the tensile fracture energy release rate Gf , while Fig. 4b shows 
the shear characteristics at different values of the normal stress. For the 
latter case, the results correspond to α = 10,000 m− 1, μr = 0.85μo, which 
gives a fairly close approximation to the experimental data. 

Fig. 3. FEM discretization and evolution of fracture pattern (black) superimposed on (a) vertical displacement field in tension and (b) horizontal displacement field 
in shear. 

Table 1 
Material parameters employed in numerical simulations.   

Brick Brick-mortar bond 

Young’s Modulus, E (MPa) 15,000 N/A 
Poisson’s ratio, υ 0.15 N/A 
Tensile Strength, ft (MPa)  3.5 0.65 
Angle of internal friction, ϕ (◦) 30 36 
Cohesion, c (MPa) 19 0.85 
Bond normal stiffness, kn (N/m) N/A 1.7 × 108 

Bond shear stiffness, kt (N/m) N/A 7.6 × 108  

Fig. 4. Mechanical characteristics for the brick–mortar bond in (a) direct tension (influence of fracture energy release, Gf) and (b) shear (influence of normal stress).  
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3.2. Simulation of tensile tests on brick masonry wallets 

In order to provide an insight into the fracture propagation mecha
nism through the masonry constituents, consider first an illustrative 
example which involves simulation of tensile tests performed by 
Backes (1985). The tests were conducted on square masonry wallets 
(490 × 490 × 113 mm) subjected to tension along the direction of bed 
joints. The analysis here is focused on simulation of two cases which 
involve two different sets of mechanical properties of constituents as 
shown in Table 2. Fig. 5a presents the 3D view and the FEM dis
cretization of the wallets, while Figs. 5b-c show the evolution of fracture 
pattern. For both sets of properties, the tensile cracks initiate in the head 

joints. However, the further propagation pattern is affected by the 
relative values of the shear strength of bed joints and the tensile strength 
of bricks. A weaker shear strength of brick–mortar bond (e.g. 0.1 – 0.2 
MPa) results in a zigzag pattern, while stronger shear bond strength (e.g. 
0.2 – 0.9 MPa) leads to formation of tensile cracks inside the bricks. In 
the latter case, the fracture mode involves formation of a nearly vertical 
crack penetrating through the head joints and bricks. 

Fig. 6 shows the corresponding average stress–strain characteristics. 
The results correspond to the fracture energy release rates (Gf ) of 
50 N/m and 10 N/m for the bricks and interface, respectively, while 
α = 15,000 m− 1 for the bed joints. The predicted structural response at 
the macroscale is very consistent with the experimental data in terms of 
both the strength and the deformation response. 

3.3. Simulation of biaxial tension–compression tests on structural 
masonry panels 

In order to provide a comprehensive verification of the proposed 
methodology with respect to combined biaxial tension and compression 
loading, a set of experimental tests conducted by Dhanasekar et al. 
(1985) and Page (1983) has been simulated. The focus was on the 
prediction of fracture pattern and the ultimate load in a broad range of 
testing configurations. The experiments were conducted on square 
0.36 m solid brick masonry panels constructed using half-scale units 
with dimensions of 115 × 35 × 50 mm. To achieve a uniform stress 

Table 2 
Material parameters employed in simulations of tensile tests of Backes (1985).   

Brick Brick-mortar bond 

Case I Case II Case I Case II 

Young’s Modulus, E (MPa) 3500 2500 N/A N/A 
Poisson’s ratio, υ 0.13 0.13 N/A N/A 
Tensile Strength, ft (MPa)  0.9 1.44 0.12 0.19 
Angle of internal friction, ϕ (◦) 30 30 30 30 
Cohesion, c (MPa) 2.5 1.5 0.25 0.15 
Bond normal stiffness, kn (N/m) N/A N/A 0.7 × 108 1.1 × 108 

Bond shear stiffness, kt (N/m) N/A N/A 3.2 × 108 3.8 × 108  

Fig. 5. Uniaxial tension parallel to bed joints: (a) FEM mesh and 3D view; (b) Crack propagation for Case I; (c) Crack pattern for Case II.  

Fig. 6. Average stress–strain characteristics for (a) Case I; (b) Case II (experimental results after Backes (1985); recorded crack patterns are shown schematically).  
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distribution along the boundaries and to enable the application of tensile 
loading, a large number of closely stacked slender elements forming 
brush-like platens were glued individually to the boundaries of the 
panel, as illustrated in Fig. 7a. The loading program incorporated uni
axial as well as biaxial tension/compression at different orientations of 
the bed joints, as shown schematically in Fig. 7b. In all tests, the prin
cipal stress directions were fixed while the orientation of the masonry 
panel was varied. For the majority of tests, the fracture mode involved 
failure along the masonry joints; however, in some experiments incor
porating biaxial loading conditions the onset and propagation of mac
rocracks within the brick units was also observed. 

The geometry of the problem, the boundary conditions and the FEM 
mesh are shown in Fig. 8. A simple structured mesh, with a total of 
15,120 eight-noded cubic elements, was employed in which the pres
ence of brick–mortar bonds has again been accounted for using the CLED 
formulation. For simulation of uniaxial tests along and normal to bed 
joints, a displacement-controlled scheme was employed (Fig. 8a); while 
for other tests, the load-controlled procedure was implemented. The 
tests on inclined specimens were simulated by transforming the 
boundary tractions to the principal material axes and applying them as a 
uniformly distributed load along the respective boundaries, Fig. 8b. 

The main challenge in validation of the present approach is a sig
nificant variability in the experimental assessment of ultimate load. This 
stems primarily from a high variation of brick–mortar bond strength as 

reported in Dhanasekar et al. (1985) and Page (1983). The latter varied 
between 0.07 and 0.28 MPa with an average of 0.13 MPa. As a result, the 
bearing capacity of the panel under uniaxial tension perpendicular to 
bed joints also varied significantly, i.e. between 0.18 and 0.32 MPa with 
a mean value of 0.24 MPa. An additional issue is incomplete information 
on properties of constituents. For example, in terms of strength prop
erties of brick units, the only information provided was that on the range 
of values of compressive strength. Also, no data has been provided on 
the deformation characteristics of the brick–mortar bond. Given these 
limitations, some additional parametric studies have been conducted 
throughout this work. The actual set of material parameters employed in 
the analysis is provided in Table 3. Here, the properties that were varied 
through parametric studies (i.e. tensile/shear strength of brick–mortar 
bond and tensile strength of brick) are displayed in boldface. 

Fig. 7. Experimental setup of Page (1983) and different testing configurations.  

Fig. 8. FEM discretization of the panel and the boundary conditions: (a) uniaxial tension; (b) inclined specimens (tractions applied uniformly along the boundaries).  

Table 3 
Material parameters employed in numerical simulations.  

Properties Brick Brick-mortar bond 

Young’s Modulus, E (MPa) 6750 N/A 
Poisson’s ratio, υ 0.17 N/A 
Tensile Strength, ft (MPa)  1.5 0.2 
Angle of internal friction, ϕ (◦) 30 39 
Cohesion, c (MPa) 4.35 0.3 
Interface normal stiffness, kn (N/m) N/A 1.3 × 108 

Interface shear stiffness, kt (N/m) N/A 6.2 × 108  
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3.3.1. Uniaxial tension tests 
The dominant fracture mode in uniaxial tension involves cracking 

along the brick–mortar interfaces. Depending on the direction of loading 
with respect to the orientation of bed joints, the tensile fracture in one 
family of joints may be followed by shear fracture in the perpendicular 
set of joints. Fig. 9 shows the evolution of damage in case of tension 
normal to the bedding planes, which are the weakest link within the 
domain. In this case, the only mode of fracture is a progressive damage 
along the bed joints, which triggers the failure at the macroscale. The 
strength of the panel is virtually the same as the tensile strength of the 
brick–mortar bond. This is shown in Fig. 10 that provides the average 

macroscopic stress–strain characteristics for the range of values recor
ded in the experiment, i.e. 0.1–0.3 MPa. 

When the direction of uniaxial tension is parallel to the bedding 
planes, the tensile fractures start developing within the head joints. For 
the current set of material parameters, the fracture pattern also involves 
development of shear fractures in the adjacent bed joints. The combined 
mechanism of sliding along the bed joints and separation along the head 
joints causes the global failure at the macroscale. Fig. 11 depicts the 
evolution of the fracture pattern during the deformation process, while 
Fig. 12 shows the average stress–strain characteristics. It is evident that, 
in this case, the ultimate load is quite sensitive to the value of the tensile 
fracture energy Gf . At the same time, the parameter α which governs the 
degradation of cohesion, viz. Eq. (11), has no influence on the predicted 
ultimate stress and affects only the stiffness in the post-peak range. 

It should be mentioned that for all load-controlled simulations, the 
bearing capacity was assessed by monitoring a stability factor (SF) 
defined as the ratio of the second rate of internal work normalized with 
respect to that corresponding to the elastic solution (Pietruszczak & 
Oulapour, 1999). In general, the stability factor remains within the 
range 1 ≥ SF ≥ 0, and SF = 0 implies the singularity in the global 
stiffness operator, i.e. the loss of stability. Fig. 13 depicts the evolution of 
SF for the present case, i.e. uniaxial tension parallel to bed joints. The 
results presented here correspond to Gf = 1N/m, α = 6000m− 1 (cf. 
Fig. 12) and include the average stress–strain characteristics up to the 
ultimate load obtained for both load-controlled (LC) and displacement- 
controlled (DC) analyses. 

In the case of uniaxial tension at 45◦, the onset of fracture occurs in 
bed joints. Again, as the load increases further the cracks along the head 
joints develop leading eventually to a zig-zag pattern at the macroscale. 
This is depicted in Fig. 14, which show a progressive evolution of the 

Fig. 9. (a) Evolution of crack pattern and the resulting failure mechanism (bright red colour) for uniaxial tension perpendicular to bed joints (θ = 90◦); (b) schematic 
crack pattern from Page (1983). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 10. Average stress–strain characteristics for different tensile strength of 
brick–mortar bond. 

Fig. 11. (a) Evolution of crack pattern and the resulting failure mechanism (bright red colour) for uniaxial tension along the bed joints (θ = 0◦); (b) schematic crack 
pattern from Page (1983). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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failure mechanism. The corresponding stress vs. average strain charac
teristics are presented in Fig. 15. Note that in this case, a load-controlled 
scheme has been implemented, as described earlier. The ultimate load is 
significantly affected by the tensile strength of brick–mortar bond, 
which is evidenced through a parametric study reported in this figure. 

3.3.2. Uniaxial compression tests 
The primary mode of fracture initiation and propagation in this 

loading scenario is the tensile splitting of the masonry panel, which 
occurs not only along the brick–mortar interfaces but also, in some 
cases, within the brick units. When the direction of loading is parallel to 
bed joints, the joint interfaces undergo a tensile fracture, forming a set of 
fracture planes that run through the entire panel. For the compression 
perpendicular to bed joints, however, the tensile fractures develop in 
head joints, followed by cracking of the adjacent brick units. This results 

in a higher compressive strength of the panel as compared to other 
loading directions, as in this case the tensile strength of bricks needs to 
be attained to trigger a loss of stability. 

An important issue to consider in these fracture scenarios is that the 
failure mechanism does not involve a complete disintegration of the 
panel at the macroscale. In fact, after formation of tensile splitting 
planes, the separated parts of the panel act like independent load 
bearing columns, allowing the panel to sustain significantly higher 
compressive loads. This part of the mechanical response is not consid
ered in assessing the ultimate bearing capacity in compression, and the 
formation of a continuous fracture that runs through the panel is 
perceived as failure. The latter effect is also described in Page (1983) 
and was used there as the definition of failure at the macroscale. It is 
noted that this scenario is unlikely to happen in large scale masonry 
structures, but it is useful for gaining insight into evaluation of the 
impact of tensile strength of bricks on the ultimate load bearing capacity 
of masonry panel. 

The evolution of fracture mode in uniaxial compression parallel and 
perpendicular to bed joints is shown in Figs. 16-17. As mentioned 
earlier, for compression parallel to bed joints, tensile cracks develop in 
bed joints without triggering the fracture in the bricks. On the other 
hand, compressive load perpendicular to bed joints causes tensile 
cracking in head joints followed by initiation of cracks in bricks at the 
vicinity of the head joints. 

3.3.3. Biaxial tension- compression tests 
The biaxial tension–compression in two perpendicular directions re

sults in a failure mode that is a combination of those discussed previously. 
The specific mechanism depends on the actual stress ratio. The testing 
program reported in Dhanasekar et al. (1985) involved the ratios of 

Fig. 12. Average stress–strain characteristics for different values of the tensile 
fracture energy release Gf and the degradation parameter.α 

Fig. 13. Evolution of the stability factor (SF) in the panel subjected to uniaxial 
tension parallel to bed joints. 

Fig. 14. (a) Evolution of crack pattern and the resulting failure mechanism (bright red colour) for uniaxial tension on inclined panel (θ = 45◦); (b) schematic crack 
pattern from Page (1983). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 15. Average stress–strain characteristics for different values of tensile 
strength at the brick–mortar interface. 
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compressive to tensile load of 2, 5, 10 and 30, and similar values 
(i.e. 2, 10 and 30) were employed in the current numerical study. The 
main results of the numerical analysis are provided in Fig. 18, which 
shows the failure envelopes in the affined space of the major and minor 
principal stresses. The simulations presented here were carried out for 
two different values of tensile strength of brick (Ft), i.e. Ft = 1.0 and 
1.5 MPa, while preserving a constant ratio of 7.5 and 5 between Ft and the 

tensile and shear strength of brick–mortar bond (ft), respectively. Thus, 
for Ft = 1.0 MPa for example, there is ft = 0.13 MPa and c = 0.2 MPa. 

The first plot in Fig. 18 shows the case of compression perpendicular 
to bed joints and tension parallel to them (i.e., θ = 0◦). In this case, the 
presence of compressive traction increases the shear resistance in bed 
joints. As a result, after the onset of cracking along the head joints, the 
tensile cracks in bricks develop, leading to a higher tensile strength 

Fig. 16. (a) Evolution of crack pattern and the resulting failure mechanism (bright red colour) (a) for uniaxial compression along the bed joints; (b) schematic crack 
pattern from Page (1983). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 17. (a) Evolution of crack pattern and the resulting failure mechanism (bright red colour) (a) for uniaxial compression perpendicular to the bed joints; (b) 
schematic crack pattern from Page (1983). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 18. Failure envelopes for different orientations of the panel (θ) and different tensile strength of masonry units (Ft).  
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as compared to uniaxial case. As an example, at the stress ratio of 2 and 
Ft = 1.5 MPa, the ultimate tensile and compressive stress values of 0.6 
MPa and 1.6 MPa are attained, while the ultimate uniaxial tensile 
strength is approximately 0.5 MPa. 

In the case of compression parallel to bed joints and tension 
perpendicular to them (i.e., θ = 90◦), the response is influenced solely by 
the bed joints which form a set of continuous weakness planes within the 
panel. In this situation, an approximately linear transition from ultimate 
uniaxial compressive strength to ultimate uniaxial tensile strength oc
curs as the load ratio decreases. The response for other panel orienta
tions, i.e. θ = 22.5◦, 45◦, and 67.5◦, has also been simulated and a 
complete set of results is presented in Fig. 18. 

4. Macroscale formulation 

The mesoscale approach, as described in Sections 2 and 3, has two 
primary range of applications; it can be employed for analysis of small- 
scale masonry structures (e.g. brick walls/arches) and, what is of pri
mary interest here, it can provide a set of ‘virtual data’ that is required to 
develop and verify a macroscale approach. 

In a macroscale framework, the masonry can be treated as a con
tinuum with a microstructure. In this case, the anisotropic strength/ 
deformation characteristics may be described by adopting a general 
framework of microstructure tensor approach as outlined in 
Pietruszczak & Mroz (2001). The approach employs the notion of a 
scalar anisotropy parameter whose value is a function of relative 
orientation of the principal stress triad with respect to the preferred 
directions of microstructure. The macroscopic failure criterion is 
formulated here by preserving the functional form consistent with 
mesoscale representation and postulating that the respective strength 
parameters depend on the orientation of the sample relative to the 
loading direction. Thus, the mathematical representation incorporates 
Mohr-Coulomb criterion with Rankine’s cut-off in tensile regime, both 
expressed in terms of stress invariants and enhanced by the notion of 
directional dependence of strength. The identification of such frame
work requires the specification of two material functions that describe 
the variation of friction coefficient and tensile strength with the orien
tation of the sample relative to the loading direction. Here, an explicit 
procedure is employed for determination of coefficients of approxima
tion of these functions based on the results of standard axial tension and 
axial compression tests performed at different orientations of bed joints. 
For a specific type of masonry, the ‘virtual’ results of such tests can be 
generated from the mesoscale simulations, as discussed in Section 3. 

Assume that the conditions at failure at the macroscale are governed 
by the strength criterion expressed in a general form as 

F = F(I1, J2, J3, ϑ) = 0 (13)  

Here, I1, J2, J3, are the basic invariants of stress tensor/deviator, while ϑ 
is a scalar anisotropy parameter. The latter describes the effect of 
orientation of principal stress axes in relation to preferred material di
rections and is defined (after Pietruszczak & Mroz, 2001) as 

ϑ = ϑ0
(
1 + ξ + b1ξ2 + b2ξ3 + b3ξ4 + ⋯

)
;

ξ = ℓ ⋅A⋅ℓ
(14)  

In the above expression, ℓ is a unit vector, referred to as a ‘loading di
rection’, whose components are the normalized magnitudes of stress 
vectors acting on planes normal to the material axes. For the structural 
masonry, the orientation of preferred material axes is defined a priori 
and is identified here with the eigenvectors of the operator A, which is a 
traceless second-order tensor. Furthermore, the approximation co
efficients ϑ0, b1, b2, b3,⋯ are constants. 

As mentioned earlier, the form of F which is employed in this work, is 
the Mohr-Coulomb representation with Rankine’s cut-off in tensile 
regime, both incorporating the orientation-dependency of the strength 

parameters. Thus 

F = max(F1,F2) = 0;

F1 =
̅̅̅
3

√
σ − ηf g1(Θ)(σm + C) = 0;

F2 = g2(Θ)σ − (σm + σt) = 0

(15a)  

where σ= (J2)
1/2

, σm = I1/3, Θ =
1
3
sin− 1

(
− 3

̅̅̅
3

√

2
J3

σ3

)

and 

g1(Θ) =
3 − sinϕ

2
̅̅̅
3

√
cosΘ − 2sinΘ sinϕ

; ηf =
6sinϕ

3 − sinϕ
;

g2(Θ) =
2̅
̅̅
3

√ sin
(

Θ +
2π
3

)

; C = ccotϕ.

(15b)  

Here, Θ is the Lode’s angle, while ϕ and c represent the angle of friction 
and cohesion, respectively. For an isotropic medium ηf and σt are ma
terial constants, while in case of anisotropy both are variables and are 
defined in the polynomial form (14), i.e. 

ηf = η̂f
(
1 + ξ + b1ξ2 + b2ξ3 + b3ξ4 + ⋯

)
;

σt = σ̂ t
(
1 + ξ + c1ξ2 + c2ξ3 + c3ξ4 + ⋯

) (16)  

where b’s and c’s are the approximation coefficients. 
For the purpose of identification of material functions (16), it is 

convenient to express the representation (15) in terms of principal stress 
values. Thus 

F1 =
1
2
(σ1 − σ2) +

1
2
(σ1 + σ2)sinϕ(ξ) − Csinϕ(ξ) = 0;

F2 = σ1 − σt(ξ) = 0; σ1 > σ3 > σ2

(17)  

where the tensile stresses are considered as positive. 
The preliminary step in the identification procedure is the assess

ment of the value of parameter C appearing in the Mohr-Coulomb failure 
condition (15). Note that this parameter is associated with hydrostatic 
tension, and as such it is orientation independent. Furthermore, C has no 
direct physical significance as the strength in tension regime is governed 
by the cut-off criterion F2 = 0 in which max{σt} < C. Thus, an assess
ment of C is required only to enable the specification of the material 
function ηf (ξ). Fig. 19 shows the linear best-fit approximations to the 
numerical data plotted in the affined space 12 (σ1 − σ2) vs. 1

2 (σ1 + σ2). An 
estimate of C was obtained by taking the maximum value over the set of 
configurations considered, which resulted in C = 0.95 MPa. 

Given the value of C, the next step is to identify the distribution of 
strength parameter ηf (ξ). Referring the problem to the coordinate sys
tem in Fig. 7b, with x-axis along the horizontal, the components of 
loading vector l and unit loading vector ℓ , for a plane stress configura
tion, become 

l2
1 = cos2θσ2

x + sin2θσ2
y ;

l2
2 = cos2θσ2

y + sin2θσ2
x ; l2

3 = 0;

ℓ2
1 =

l2
1

l2
1 + l2

2
=

cos2θσ2
x + sin2θσ2

y

σ2
x + σ2

y
;

ℓ2
2 =

l2
2

l2
1 + l2

2
=

cos2θσ2
y + sin2θσ2

x

σ2
x + σ2

y
.

(18)  

Assume, as a first approximation, that the material may be perceived as 
transversely isotropic. In this case, A1 = A3, which in view of the fact 
that A is a traceless operator, implies A2 = − 2A1. Thus, the dyadic 
product ξ = ℓ ⋅A⋅ℓ may be defined in an explicit form 
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ξ = ℓ ⋅A⋅ℓ = A1
(
l2
1 − 2l2

2

)

= A1

[
σ2

x

(
1 − 3sin2θ

)
+ σ2

y

(
1 − 3cos2θ

)

σ2
x + σ2

y

] (19)  

in which A1 is the only independent eigenvalue of A. It is evident that for 
the uniaxial load, the above expression simplifies to ξ = A1

(
1 − 3sin2θ

)
. 

Fig. 20a shows the best-fit approximation for the function ηf (ξ). The 
results are based on the numerical data for uniaxial compression at 
different orientations of bed joints. Note that in this case 

σ1 = fc

σ2 = 0

}

→sinϕ =
fc

fc + 2C
;

ηf =
6sinϕ

3 − sinϕ
=

3fc

fc + 3C

(20)  

where fc = fc(ξ) is the uniaxial compressive strength. The approxima
tions are provided again for two different values of the tensile strength of 
brick units, viz. Ft = 1.0 and 1.5 MPa, which is similar to the parametric 
study in Section 3.1.3. The mathematical representation incorporates 
the terms up to the order of three in Eq. (16) and the respective values of 
coefficients of approximation are given in Table 3. 

Fig. 20b shows the best-fit approximation for the function σt(ξ), 
which describes the spatial variation of uniaxial tensile strength of the 
brickwork. Here, the approximations employ again the third-order terms 
in the dyadic product ℓ ⋅A⋅ℓ . The resulting approximation coefficients, 
for both sets of parameters associated with Ft = 1.0 and 1.5 MPa, are 
given in Table 4. 

Finally, Fig. 21 shows the numerical predictions of strength in biaxial 
tension–compression based on the failure criterion (15). Here, the values 
of best-fit approximation coefficients provided in Table 4 were 
employed and the results correspond to θ = 0◦, 22.5◦, and 90◦. 

Table 4 
The coefficients of best-fit approximation for material functions ηf (ξ) and σt(ξ).   

η̂f  A1  b1  b2  b3  σ̂ t  A1  c1  c2  c3  

Ft = 1.5MPa   2.11  0.089 − 10.67  56.56  639.10  0.20 − 0.387  5.83  2.34 − 10.67 
Ft = 1.0MPa   1.96  0.125 − 6.09  14.04  159.76  0.17 − 0.507  2.84  0.97 − 3.93  

Fig. 20. Best-fit approximations to spatial distribution of strength parameters ηf and σt .  

Fig.19. Failure envelopes in compression regime for θ = 90◦ and θ = 0◦ , respectively.  
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5. Final remarks 

The main focus in this work was the development of a computational 
framework for meso and macroscale analysis of structural masonry. The 
mesoscale approach incorporated a constitutive law with embedded 
discontinuity to deal with the localized deformation in bed/head joints 
as well as with the onset and propagation of damage in brick units. In 
this case, a simple structured FEM has been used in which the 
brick–mortar interface, which represents the weakest link in the ma
sonry panel, is perceived as being embedded in the adjacent intact 
medium. For bricks, the level-set method has been employed for tracing 
the location and propagation of cracks. The proposed methodology 
yields the results that are not affected by the finite element discretiza
tion, which is due to the presence of a length-scale parameter. In addi
tion, the treatment of head/bed joints, as being embedded within a 
structured mesh, significantly improves the computational efficiency as 
compared to standard approach that explicitly incorporates all constit
uents and their interfaces. 

The objectives of developing the mesoscale approach are two-fold. 
On one hand, the framework is suitable for the analysis of small-scale 
masonry structures. At the same time, it provides a bridging between 
the two scales, i.e. it serves the purpose of generating ‘virtual data’ that 
can be employed for identification of material functions appearing in the 
macroscale approach. Both these aspects have been illustrated by a 
number of numerical examples that included the simulations of the 
tensile and shear tests on brick–mortar bond as reported in Van der 
Pluijm (1997, 2000) as well as a comprehensive analysis of a set of 
experimental tests conducted by Dhanasekar et al. (1985) and Page 
(1983). The latter involved masonry panels subjected to biaxial loading 
at different orientations of bed joints. For all cases considered, the re
sults have been compared with experimental data, thereby providing a 
proof-of-concept. 

For the macroscale approach, only some preliminary work has been 
reported here. In particular, a procedure for identification of material 
functions embedded in this framework has been outlined. The latter 
employed the results of axial compression and tension generated 
through the mesoscale analysis of panels at different orientation of bed 
joints. Obviously, a more accurate approximation of these functions may 
be obtained by also considering the biaxial tension–compression 
loading. 

For the macroscale simulations, an important issue is the specifica
tion of the conditions for the onset of localization. In this case, the 
representation (15) may be phrased in the context of elastoplasticity, so 
that the localization is perceived as a bifurcation problem. Alternatively, 
if the conditions at failure are defined through Coulomb and/or Rankine 
type of criterion, the critical plane approach (Pietruszczak and Mroz, 
2001) may be employed whereby the orientation of the localization 
plane is defined as a constrained optimization problem. Finally, one can 
also use the ‘virtual’ data generated from the mesoscale analyses and 
construct a data-driven neural network that would predict the orienta
tion of macro-fracture for a given stress state. Such an approach could 

potentially prove to be efficient in engineering applications and will be 
explored in the follow up studies. 
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